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On this basis, as @ is varied from 0 to 90 °, the 
general point L'_ traces out the line L'_L_ in Fig. 2(c). 
At some value of @, this line will cross the plane 
through the A20 axis. The A locus is then OL "°, in 
projection OL °. The whole of the AA band interacts 
simultaneously and so the A component makes a zero 
contribution to the 'counter' profile for this setting 
of ~. The setting condition for @ is that cos @ = - t ;  
see equation (4) in Mathieson (1985). 

Hence, by the appropriate choice of qb, one can 
bring any reflection with scattering angle 0c to the 
ZWD condition. The only limitation is that 0c-< 0M. 

Discussion 

While the classical 'parallel' condition has valuable 
properties for the measurement of reflectivity curves 
and for the establishment of accurate structure-factor 
values, there are restrictions in its use. Normally, one 
wishes to measure for a specimen crystal a number 
of different Bragg reflections which span a range of 
0c. If only one monochromator crystal is available, 
then measurement in the ZWD condition cannot be 
attempted. The alternative is to obtain a number of 
monochromator crystals with Bragg angles exactly 
matched to those of the specimen c rys ta l - a  task 
difficult in practice. The scheme outlined here would 
provide suitable flexibility to extend the capability of 
zero-wavelength-dispersion measurement. 

Fig. 2, especially Fig. 2(c), shows that the range of 
application of the procedure lies within the region 

0 - 0 c - 0 M .  Hence the larger 0M is, the wider is its 
range of application and the greater its usefulness. 
The advantage of high 0M for matters of resolution 
has been advocated on many occasions - the present 
proposal would appear to provide further reason for 
the use of high-0M monochromator crystals. 

To effect this type of measurement requires that 
the four-circle diffractometer necessary to orient the 
specimen crystal (and detector) be itself mounted in 
a cradle which is capable of rotation about the beam 
for the monochromator crystal at least over the range 

= 0 to 90 °. Thus, the basic requirement is a five- 
circle device. 

The procedure suggested here would appear to be 
of interest to some users of synchrotrons where ZWD 
operations could be of value to explore variability in 
reflectivity curves and hence extinction conditions; 
see Fig. 4 in H/Sche, Schulz, Weber, Belzner, Wolf & 
Wulf (1986). 

References 

COMPTON, A. H. & ALLISON, S. K. (1935). X-rays in Theory and 
Experiment. New York: Van Nostrand. 

HOCHE, H. R., SHULZ, H., WEBER, H.-P., BELZNER, A., WOLF, 
A. 8£ WULF, R. (1986). Acta Cryst. A42, 106-110. 

MATHIESON, A. McL. (1968). Rev. Sci. lnstrum. 39 1834-1837. 
MATHIESON, A. McL. (1983). J. Appl. Cryst. 16, 572-573. 
MATHIESON, A. McL. (1984). Acta Cryst. A40, 355-363. 
MATHIESON, A. McL. (1985). Acta Cryst. A41,309-316. 
MATHIESON, A. McL. & STEVENSON, A. W. (1986a). Acta Cryst. 

A42, 223-230. 
MATHIESON, A. McL. & STEVENSON, A. W. (1986b) Acta Cryst. 

A42, 435-441. 

Acta Cryst. (1987). A43, 554-556 

Functional Form of Some Ideal Hypersymmetric Distributions of Structure Factors 

BY A. J. C. WILSON 

Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England 

(Received 30 November 1986; accepted 4 February 1987) 

Abstract 

The hypercentric or hyperparallel distribution of 
structure factors of order n [Rogers & Wilson (1953). 
Acta Cryst. 6, 439-449] can be expressed in terms of 
Meijer's G functions [Erdrlyi (1953). (Editor.) Higher 
Transcendental Functions, Vol. I, Ch. V. New York: 
McGraw-Hill]: 

Pn(F) = (2"-2~r"£) -'/2 
nO x ½,...,½; o , o , . . . , o ) ,  

where F is the modulus of the structure factor. This 
reduces to the known centric and bicentric distribu- 
tions for n = 1, 2. 

0108-7673/87/040554-03801.50 

Introduction 

The simplest hypersymmetric distribution, the bicen- 
talc, was introduced by Lipson & Woolfson (1952). 
They expressed it as an integral and evaluated it 
numerically. Their work was extended to higher 
hypersymmetries (hypercentric and hyperparallel) by 
Rogers & Wilson (Wilson, 1952; Rogers & Wilson, 
1953), who showed that the bicentric distribution 
could be expressed in terms of the known Bessel 
function Ko. For the higher members of the series 
Rogers & Wilson gave integral representations, 
moments and Gram-Charlier expansions. The pur- 
pose of this note is to express the higher members in 
terms of the known but not very familiar G functions 
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( Meij er, 1941, 1946). A brief summary of their proper- 
ties is given by Erdrlyi (1953, Ch. V). They have had 
many applications in statistics, particularly in tests 
of significance (Mathai & Saxena, 1973, Ch. 6). With 
the introduction of 'exact '  Fourier and Fourier-Bessel 
expressions (Shmueli, Weiss, Kiefer & Wilson, 1984; 
Weiss, Shmueli, Kiefer & Wilson, 1985; Shmueli, 
Weiss & Kiefer, 1985) the results are less interesting 
than they would have been if they had been obtained 
in 1953, but it seems worthwhile to place them on 
record. Like the acentric and centric distributions, 
they depend ultimately on the central-limit theorem 
(Wilson, 1949). 

Derivation of the distribution function 

Equation (12) of Rogers & Wilson (1953) is 

pn( f f )  = (2n/  Tr2n-12) 1/2 

x I :./2 I exp ( - F  2 sec 2 ~02... sec 2 ~ , / 2 " 2 )  
0 

[Gradshteyn & Ryzhik (1980), formula 9.34 (6)]: 
co 

P 3 ( F ) = ( 2 7 r 4 2 )  - ' /2 ~ G2:°2(F2x3/82 ½; O, O) 
l 

X [ X 3 ( X  3 - -  1)] -1/2 d x  3 . (6) 

The integral is known [Gradshteyn & Ryzhik, formula 
7.811 (3)], giving 

P3(F ) (27r32)-1/2 30 = G2:3(F2/82 ½, ½; 0, 0, 0). (7) 

For n > 3 the process can be continued by the use of 
the same formula, each step increasing three of the 
affixes of G by unity and decreasing the power of 7r 
within the parentheses by unity, so that eventually 

p , , ( F ) = ( 2 " - 2 7 r " 2 )  - ' /2 

n O  2 n x G,;--1,,,(F/2 21½,... ,½; 0 , 0 , . . . , 0 ) .  (8) 

This reduces to the known centric and bicentric distri- 
butions for n = 1, 2. 

x sec ~o 2 . . . sec q~n d ~ o 2 -  • • d~,,  n -> 2, 

(1) 

where F is the modulus of the structure factor. With 
the substitutions 

Xj = see 2 % (2) 

this becomes 

P.( F) = (2n-Z ' r r2n- '2 )  -1/2 

oo 

x I " ; "  j" exp ( - F 2 x 2 . . .  x , , / 2 "2 )  

x [x2(x2-1)] - ' /2 dx2. . . [x , , (x , , -  1)] - ' /2 dx,,. 

(3) 

Performing the integration with respect to x2 gives 

Pn(F) = (2"-2rr2"- '2)  - ' /2 

x ~ .~. . ~ exp  ( - F 2 x 3  . . . x , , /2"+12)  
1 

X K o ( F 2 x 3 . . .  xn/2"+lX) 

x [x3(x3 - 1)]-1/2 dx3 •. • [x, ,(x,  - 1)]-'/2 dx, 

(4) 
[Gradshteyn & Ryzhik (1980), formula 3.383 (3)]. For 
n - -2  the process stops here, there being no integra- 
tions left, and 

P E ( F ) = ( T f 3 2 )  -1/2 exp  ( -FE /82 )Ko(F2 /8 , ,Y , ) ,  (5) 

in agreement with equation (15) of Rogers & Wilson 
(1953). For n =3 the integration can be performed 
after replacing K0 in (4) by its G-function equivalent 

Computation of G functions 

The computation of G functions has been treated by 
Mathai & Saxena (1973, Ch. 5). They obtain 
expansions in series of powers of 1OgeX with very 
complicated coefficients; these simplify somewhat in 
the present problem because there is only one 
independent affix n and the parameters are all either 
0 or ½. The asymptotic expansions are somewhat sim- 
pler, the leading term being 

P, (F) = (2"-27r"2 )-,/2( F212"2 ) - ( " - '  )/2 

x exp ( - F 2 / 2 " 2 ) .  (9) 

For n = 1 (the ideal centric distribution) this reduces 
to the correct form 

P , ( F ) = ( 2 / T r 2 ) 1 / 2 e x p ( - F 2 / 2 2 )  (10) 

and for n = 0  (the ideal acentric distribution) it 
reduces to 

P o ( F ) = ( 2 F / 2 ) e x p ( - F 2 / 2 ) .  (11) 

The correct form in (11) is perhaps unexpected, since 
the G function is not defined for negative affixes, and 
p takes the value -1  for n = 0. 

References 
E R D I ~ L Y I ,  A. (1953). (Editor.) Higher Transcendental Functions, 

Vol. I. New York: McGraw-Hill. 
GRADSHTEYN, I. S. & RYZHIK, I. M. (1980). Tables of Integrals, 

Series, and Products, UK edition edited by A. JEFFREY. London: 
Academic Press. 

LIPSON, H. & WOOLFSON, M. M. (1952). Acta Cryst. 5, 680-682. 
MATHAI, A. M. & SAXENA, R. K. (1973). Generalized Hyper- 

geometric Functions with Applications in Statistics and Physical 
Sciences. Berlin: Springer. 

MEIJER, C. S. (1941). Proc. [K.] Ned. Akad. Wet. 44, 81-92, 
186-194, 298-307, 442-451,590-598. 



556 SOME IDEAL HYPERSYMMETRIC DISTRIBUTIONS 

MEIJER, C. S. (1946). Proc. K. Ned. Akad. Wet. 49, 227-237, 
344-356, 457-469, 632-641,765-772, 936-943, 1063-1072, 1165- 
1175. 

ROGERS, D. • WILSON, A. J. C. (1953). Acta Cryst. 6, 439- 
449. 

SHMUELI, U., WEISS, G. H. & KIEFER, J. E. (1985). Acta Cryst. 
A41, 55-59. 

SHMUELI, U., WEISS, G. H., KIEFER, J. E. & WILSON, A. J. C. 
(1984). Acta Cryst. A40, 651-660. 

WEISS, G. H., SHMUELI, U., KIEFER, J. E. & WILSON, A. J. C. 
(1985). Structure and Statistics in Crystallography, edited by 
A. J. C. WILSON. Guilderland: Adenine Press. 

WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 
WILSON, A. J. C. (1952). Research, 5, 588-589. 

Acta Cryst. (1987). A43, 556-564 

Maximum Entropy Calculation of Electron Density with Native and 
Single Isomorphous Replacement Data 

BY RICHARD K. BRYAN AND DAVID W. BANNER* 

European Molecular Biology Laboratory, Meyerhofstrasse 1, 6900 Heidelberg, Federal Republic of Germany 

(Received 5 November 1986; accepted 16 February 1987) 

Abstract 

Maximum entropy is applied to the calculation of 
electron density maps from native and single 
isomorphous replacement (SIR) intensity data. 
Native intensity data alone at around 3 A, resolution 
are shown to be an insufficient constraint to give an 
interpretable map. When the method is applied to 
SIR data at the same resolution, either by direct 
selection between the 'most probable' phases, or by 
using both intensity data sets directly as constraints, 
the result is a significant improvement over a conven- 
tional 'best' map, as demonstrated by a calculation 
on data synthesized from a protein fragment. The 
robustness of the method is demonstrated by a series 
of calculations using increasingly noisy data. 

1. Introduction 

Recently, there has been increasing interest in apply- 
ing maximum ent1:opy in crystallography, ranging 
from the fundamental theory (Wilkins, Varghese & 
Lehmann, 1983; Livesey & Skilling, 1985) and the 
connection with direct methods (Bricogne, 1984) to 
the presentation of computational results. The latter 
have shown (e.g. Collins, 1982; Bricogne, 1984; Wei, 
1985; Wilkins & Stuart, 1986; Navaza, 1986) that if 
structure factors are supplied to, say, 3 or 4 A, then 
structure factor extension is possible (i.e. meaningful 
Fourier coefficients may be generated at reciprocal- 
lattice points beyond the resolution of the data pro- 
vided). These calculations are analogous to those of 
Gull & Daniell (1978), in which the data were Fourier 
coefficients obtained by radio interferometer observa- 
tions. However, our opinion is that if reliable multiple 
isomorphous replacement (MIR) phases are already 

*Present address: F. Hoffmann-La Roche, 4002 Basle, 
Switzerland. 

available to, say, 3 A, resolution, an electron density 
map produced by direct Fourier synthesis is usually 
interpretable. Whilst the map quality may be 
improved by structure factor extension beyond this 
figure, it is not essential for detailed model building. 
Delay in many protein structure determinations is 
frequently due to the difficulty of finding at least two 
derivatives which are sufficiently isomorphous to the 
native at 3 A, resolution. Several derivatives might be 
found which give good data to around 6 A resolution, 
but not beyond, either because the crystals diffract 
poorly, or because the structure is disturbed locally 
by the inclusion of the heavy atoms so that it becomes 
non-isomorphous at higher resolution. Many tech- 
niques have evolved to make use of partly phased 
data, such as the use of non-crystallographic sym- 
metry averaging, which has had great success in 
icosahedral virus structure determination (Harrison, 
Olson, Schutt, Winkler & Bricogne, 1978; Hogle, 
Chow & Filman, 1985; Rossmann et al., 1985), where 
there are a large number of subunit copies in the 
asymmetric unit. However, such methods cannot be 
used in the more general problem without symmetry. 
Another approach has been to combine isomorphous 
replacement and direct methods (Hauptman, 1982), 
which, like many established direct methods, requires 
the assumption of atomicity, and will almost certainly 
lose power at lower resolution. 

In previous work (Bryan, Bansal, Folkhard, Nave 
& Marvin, 1983), maximum entropy was applied to 
the calculation of the electron density of the coat 
protein of the filamentous virus Pfl from fibre diffrac- 
tion data. Data from the native structure to 4 A, reso- 
lution and a single isomorphous derivative to 5 A, 
resolution were available (Nave et al., 1981). The 
finite radius of a filamentous structure implies con- 
tinuity of the structure factors as a function of layer- 
line radius, which is not ensured if the conventional 
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